
www.manaraa.com

Under 
onsideration for publi
ation in J. Fun
tional Programming 1Web Programming in S
heme with LAMLKURT N�RMARKDepartment of Computer S
ien
eAalborg UniversityDenmark(e-mail: normark�
s.au
.dk)Abstra
tFun
tional programming �ts well with the use of des
riptive markup in HTML and XML.There is also a good �t between S-expressions in Lisp and the means of expression inHTML and XML. These similarities are exploited in LAML whi
h is a software pa
kagefor S
heme. LAML supports exa
t mirrors of HTML 4.01, the three variants of XHTML1.0, SVG 1.0, and a number of more spe
ialized XML languages. The mirrors are allsynthesized automati
ally from do
ument type de�nitions (DTDs). Ea
h element in amirror is represented by a named fun
tion in S
heme. The mirror fun
tions validate theXML do
ument while it is generated. The validation is based on �nal state automata thatare automati
ally derived from the DTD.1 Introdu
tionIn this paper we dis
uss the use of S
heme (Kelsey et al., 1998) in the domainof web programming and web authoring. Our primary 
on
ern is the modelling ofHTML and XML in S
heme. This topi
 is relevant for both stati
 web do
umentsand for dynami
 do
uments generated by programs running on a web server.LAML stands for Lisp Abstra
ted Markup Language. The key idea of LAMLis to make existing and major markup languages, su
h as HTML 4.01, XHTML1.0, and SVG 1.0 available as a set of S
heme fun
tions. Using the XML-in-LAMLframework, LAML supports the generation of S
heme mirror fun
tions of any XMLlanguage de�ned by a DTD. The S
heme mirror fun
tions re
e
t the properties and
onstraints of elements and attributes in the markup language.LAML do
uments are written as S
heme programs. The textual 
ontent is rep-resented as string 
onstants. HTML and XML do
ument fragments are writtenas S
heme expressions whi
h 
all the mirror fun
tions. Internally, a do
ument isrepresented as an abstra
t syntax tree. In a LAML sour
e do
ument there is nolexi
al nor synta
ti
al tra
e left of HTML or XML. As a 
ontrast to other simi-lar S
heme-based systems (S
ribe and BRL, see se
tion 6) LAML uses a standardS
heme reader. LAML 
an therefore be used with any R4RS or R5RS S
heme sys-tem whi
h implements a small 
olle
tion of well-de�ned, operating system relatedpro
edures and fun
tions (su
h as file-exists? and delete-file.)The primary goal of LAML is to support the 
reation of 
omplex web materialsin S
heme. Complex web materials resemble in many ways non-trivial programs.



www.manaraa.com

The need of abstra
tion is a primary 
on
ern. At the �ne grained level, abstra
tion
an be supported by de�nition of fun
tions that en
apsulate a number of do
u-ment details. At a more 
oarse grained level, linguisti
 abstra
tion is supported inLAML by the generation of exa
t mirrors of XML languages, as de�ned by DTDs.Programmati
 means of expressions, as re
e
ted by sele
tion and iteration, is alsoimportant when we deal with 
omplex web do
uments. As a parti
ular aspe
t,LAML has been designed to make good use of higher-order list fun
tions. This willbe illustrated in se
tion 4.The sour
e of a LAML web do
ument is a S
heme program, whi
h uses theLAML libraries, most importantly the set of HTML and/or XML mirror fun
tions.Working on this ground, the S
heme programming language is available at anylo
ation in a web do
ument, and at any time during the authoring pro
ess. As apragmati
 
onsequen
e, many problem solving aspe
ts 
an be handled inside thedo
ument|expressed in S
heme|as opposed to a handling by external XML toolsand pro
essors. Of these reasons, we use the term programmati
 authoring for ourapproa
h (N�rmark, 2002).LAML uses the relatively weak typing me
hanisms of S
heme. The values ofHTML and XML related expressions are typed, but the LAML sour
e programis not. As an impli
ation, the validity of a LAML web do
ument is 
he
ked atdo
ument generation time, when the S
heme program generates and transformsthe internal AST representation of the do
ument.The main 
ontribution of this work is the mirroring s
heme that makes HTMLand XML elements available as ordinary S
heme fun
tions. The integrated valida-tion of the generated do
uments at do
ument generation time is an important partof the approa
h, be
ause it enhan
es the quality of the generated web do
uments.The �tting of the framework to support a natural organization of do
ument datain lists is also important.In se
tion 2 we dis
uss a 
ouple of simple examples of 
omplete LAML do
umentsat the `hello world' level. In se
tion 3 the HTML mirror fun
tions are explainedand dis
ussed. Se
tion 4 
ontains additional examples, primarily illustrating theuse of higher-order fun
tions together with LAML. In se
tion 5 the XML-in-LAMLframework is 
overed. The work on LAML is related to similar work in se
tion 6. Inthe remaining parts of the paper we will restri
t the dis
ussion to XML, in
ludingXHTML, but ex
luding older versions of HTML.2 An initial exampleFigure 1 shows a `hello world' example to illustrate the 
omposition of a 
ompleteLAML do
ument. The �rst line loads the fundamental LAML software; The se
ondline loads the XHTML 1.0 transitional mirror library; Then follows a write-html
lause, whi
h 
ontains a (html ...) expression. The expression uses the XHTMLmirror fun
tions html, head, title, body, p, and awhi
h 
orrespond to the similarlynamed elements in XHTML. The �rst parameter of write-html 
ontrols the kindof rendering (raw as opposed to pretty printed) and the use of a do
ument prologin terms of an XML de
laration and do
ument type de�nition.2



www.manaraa.com

(load (string-append laml-dir "laml.s
m"))(laml-style "simple-xhtml1.0-transitional-validating")(write-html '(raw prolog)(html 'xmlns "http://www.w3.org/1999/xhtml"(head (title "Hello World"))(body (p "Hello" (a 'href "http://www.w3
.org/" "W3C")))))(end-laml) Fig. 1: A LAML 'Hello World do
ument'.Most LAML do
uments introdu
e a number of do
ument abstra
tions. Even inrelative simple web do
uments there are many good uses of fun
tional abstra
tions.This is illustrated by elaborating the example from �gure 1 to that of �gure 2. Manyuseful abstra
tions are related to attribute values, su
h as the fun
tion w3
-url thatabstra
ts the pre�x part of the W3C URL. Others are related to sets of attributes,su
h as html-props and body-props.It is also useful to introdu
e 
ontent-related abstra
tions. As an example, thedo
ument in �gure 2 implements and uses the fun
tion indent-pixels. The fun
-tion is implemented in terms of an HTML table. The fun
tion author-signature,whi
h is intended to be de�ned in a LAML startup �le 
alled .laml, returns theauthor's name, aÆliation, and email address.We will here make two observations about 
ontent-related abstra
tions in LAML.First, ordinary positional parameters do not �t well with the parameter 
onventionsof the HTML mirror fun
tions. Therefore it may be attra
tive to use a more HTML-like parameter pro�le of indent-pixels and similar fun
tions. We show how this
an be done in se
tion 4. Se
ond, if a 
oherent 
olle
tion of 
ontent abstra
tions isne
essary, it is often useful to implement this 
olle
tion as a new XML language inLAML. We dis
uss this in se
tion 5.3 XHTML mirror fun
tionsThe XHTML mirror fun
tions are designed with the goal that element instan
es inweb do
uments should have straightforward and easily re
ognizable 
ounterpartsin S
heme. As examples, the XML 
lauses<tag1 a1 = "v1" ... am = "vm">
ontents</tag1><tag2 a1 = "v1" ... am = "vm" />
orrespond to the S
heme expressions(tag1 'a1 "v1" ... 'am "vm" "
ontents")(tag2 'a1 "v1" ... 'am "vm")Expressions like these are evaluated to instan
es of ASTs, whi
h in turn arerepresented as tagged list stru
tures. AST nodes hold information about the elementname, the element 
ontents, the attributes, and the XML language being used. An3



www.manaraa.com

(load (string-append laml-dir "laml.s
m"))(laml-style "simple-xhtml1.0-transitional-validating")(lib-load "xhtml1.0-
onvenien
e.s
m")(define html-props (list 'xmlns "http://www.w3.org/1999/xhtml"))(define body-props(list 'bg
olor (rgb-
olor-en
oding white) 'text (rgb-
olor-en
oding bla
k)'link (rgb-
olor-en
oding blue) 'vlink (rgb-
olor-en
oding blue)))(define (w3
-url suffix) (string-append "http://www.w3
.org/" suffix))(define (indent-pixels p indented-form)(table 'border "0"(tr (td 'width (as-string p))(td 'width "*" indented-form))))(write-html '(raw prolog)(let ((ttl "A simple page"))(html html-props(head (title ttl))(body body-props(h1 ttl)(indent-pixels 50(p "The" (a 'href (w3
-url "") "W3C")"web site has information about"(a 'href (w3
-url "MarkUp/") "HTML") _ ","(a 'href (w3
-url "XML/") "XML") _ ",""and many other web te
hnologies."))(author-signature) ))))(end-laml)Fig. 2: A simple LAML web do
ument with a number of abstra
tions.AST is typi
ally transformed to a lower level representation (su
h as an HTMLAST), rendered as a strings, or rendered dire
tly to an open output port. In bothrendering situations we avoid ex
essive string 
on
atenation in order to redu
e theamount of garbage 
olle
tion of string parts.A mirror fun
tion a

epts AST values, 
hara
ter referen
e values (tagged listslike the ASTs) as well as strings, symbols, booleans, and lists. At run time, thetype of the a
tual parameter values are used to 
ontrol the interpretation of theparameters, prior to the building of an AST. The 
exibility of Lisp, as a 
ontrastto the rigidness of stati
ally typed fun
tional languages, is 
ru
ial for our approa
h.The mirror fun
tions obey the following parameter passing rules:� Rule 1. A symbol represents an attribute name. Symbols of the form 
ss:arefers to the a attribute in CSS. A symbol must be followed by a string thatplays the role of the attribute's value.� Rule 2. A string whi
h does not follow a symbol is an element 
ontent item.Chara
ter referen
e values as well as AST values returned by mirror fun
tionsare also element 
ontent items.� Rule 3. All element 
ontent items are impli
itly separated by white spa
e.4



www.manaraa.com

� Rule 4. A boolean false value in between element 
ontent items (normallybound to the unders
ore variable) suppresses white spa
e.� Rule 5. A list of symbols, strings, booleans, 
hara
ter referen
es, and ASTsis pro
essed re
ursively, and the resulting 
ontent items, attributes and whitespa
e markers are spli
ed with the surrounding list of parameters.The following LAML expression illustrates the parameter passing rules.(p "The" (a 'href "http://www.w3
.org" "WWW") "Consortium" _ ".")The value of the expression is an AST, whi
h 
an be printed as(ast "p" ("The" #t (ast "a" ("WWW") (href "http://www.w3
.org")double xhtml10-transitional)#t "Consortium" ".") () double xhtml10-transitional)A boolean true value in the AST expli
itly represents white spa
e. The AST 
anbe rendered as the following HTML 
lause:<p>The <a href = "http://www.w3
.org">WWW</a> Consortium.</p>"Noti
e that the mutual order of element 
ontent items and attributes is arbitraryas long as Rule 1 is adhered to. Thus, (a 'href "http://www.w3
.org" "A" "B""C") and (a "A" 'href "http://www.w3
.org" "B" "C") are equivalent expres-sions. The rationale behind Rule 3 is to support white spa
e in between 
ontent
onstituents (the typi
al 
ase) without use of additional, expli
it markup elements.In Lisp it is often 
onvenient to represent do
ument fragments as nested lists.This is the rationale behind Rule 5. As an example, the expression(let ((attributes (list 'start "3" '
ompa
t "
ompa
t"))(
ontents (map li (list "one" "two" "three"))))(ol 'id "demo" 
ontents (li "final") attributes))whi
h 
an be rendered as<ol id = "demo" start = "3" 
ompa
t = "
ompa
t"><li>one</li> <li>two</li> <li>three</li> <li>final</li></ol>shows that both an attribute list and a 
ontent fragment list 
an be passed to theol mirror fun
tion.The XHTML mirror fun
tions validate the generated do
ument at the time theLAML expressions are evaluated. The validation is done relative to the underlyingDTD. Both the do
ument 
omposition and the attributes are 
he
ked. The do
u-ment 
omposition must be in a

ord with the element 
ontent models, whi
h takentogether represent a 
ontext free grammar of the XML language; The attributesare 
he
ked for attribute existen
e, presen
e of required attributes, attribute types,and avoidan
e of attribute dupli
ation. In 
ase of validation problems, warnings areissued. If the author wants to, a validation failure may also lead to a fatal error.Additional details of the do
ument validation framework is dis
ussed in se
tion 5.The validation of the do
ument against the DTD would be in vain if the textual
ontent or an attribute value of a do
ument is allowed to 
ontain the 
hara
ter '<'5



www.manaraa.com

or '>' (or a double quote 
hara
ter in an attribute value). Instead of prohibitingthese 
hara
ters in the textual 
ontents of LAML do
ument we translate them totheir similar HTML 
hara
ter referen
es, su
h as &lt;. The translation is 
arriedout by means of a systemati
 mapping of every 
hara
ter in the textual 
ontents andin attribute values. We also use the mapping to translate national 
hara
ters, su
has the Danish `�', `�', and �̀a', to the 
orresponding HTML 
hara
ter referen
es.4 Examples with higher-order fun
tionsThere are many good uses of higher-order fun
tions in relation to the XHTMLmirror fun
tions. As the �rst appli
ation, we will see how an HTML table 
an bemade by 
ombining the table, tr, and td mirror fun
tions. In many 
ontexts we�nd it natural to represent tables as list of rows, where ea
h row is a list of elements:(define sample-table '(("Row" "no." "1") ("Row" "no." "2")))The following expression generates an XHTML table of sample-table(table (map (
ompose tr (map td)) sample-table) 'border "1")The table is rendered as<table border = "1"> <tr><td>Row</td> <td>no.</td> <td>1</td></tr><tr><td>Row</td> <td>no.</td> <td>2</td></tr></table>Above, it is assumed that map is 
urried (done by the LAML fun
tion 
urry-generalized). The fun
tion 
ompose 
omposes two or more fun
tions to a singlefun
tion.The LAML higher-order fun
tion xml-modify-element is able to bind attributes(and 
ontent items as well) to �xed values in a mirror fun
tion. As an example, thefollowing expression returns a spe
ialized a (an
hor) fun
tion in whi
h the targetand the title attributes have �xed values:(xml-modify-element a 'target "main" 'title "Goes to the main window")It is sometimes useful to 
onvert a fun
tion with ordinary positional parameterpassing to fun
tions with LAML mirror fun
tion parameter passing (as de�ned bythe �ve rules in se
tion 3). As an example, we de�ned the fun
tion indent-pixelsin �gure 2 to take two parameters, namely the indentation and a single elementinstan
e. Instead of the expression(indent-pixels 50 (div (p "First par.") (p "Se
ond par.")))we want to introdu
e attributes and 
ontent items, su
h as(new-indent-pixels 'indentation "50" (p "First par.") (p "Se
ond par."))With the new parameter pro�le we 
an pass an arbitrary number of 
ontent itemsto new-indent-pixels without aggregating them with div. The fun
tion xml--in-laml-parametrization generates the new version of the indentation fun
tionfrom the existing one: 6



www.manaraa.com

(define new-indent-pixels(xml-in-laml-parametrization indent-pixels(lambda (
ontents attributes)(list (get-prop 'indentation attributes) (div 
ontents)))(required-implied-attributes '(indentation) '())))The se
ond parameter of xml-in-laml-parametrization is a fun
tion whi
h is de-manded to return the parameter list to indent-pixels given the 
ontent items andthe attribute property list. The third parameter of xml-in-laml-parametrizationis supposed to validate the the 
ontents and the attributes. Above, we use the fun
-tion required-implied-attributes whi
h returns a predi
ate that ensures thepresen
e of the indentation attribute, and that no other attributes are passed.A fun
tion similar to xml-in-laml-parametrization allows us to make ad ho
abstra
tions on top of existing XML mirror fun
tions.5 Synthesis of XML mirror fun
tionsThe mirror fun
tions of an XML language 
an be synthesized from the XML do
u-ment type de�nition (DTD) of the language. LAML supports a DTD parser, whi
hdelivers a list representation of the DTD, in whi
h all entity instan
es (textualma
ro appli
ations) are unfolded. The list representation of the DTD is used asinput to the LAML mirror generation tool, whi
h 
reates a S
heme sour
e �le withthe mirror fun
tions of XML elements. The XHTML mirrors des
ribed in se
tion3, as well as a mirror of SVG, have been produ
ed by these tools.As an important aspe
t, the mirror fun
tions validate XML do
uments at do
u-ment generation time. The validation of the attributes has already been explainedin se
tion 3. LAML de�nes a validation pro
edure for ea
h mirror fun
tion. Thevalidation pro
edure 
he
ks the 
ontext free 
orre
tness of a 
onstru
t relative tothe 
ontent spe
i�
ations of the XML DTD. In 
ase of validation problems, an er-ror message is printed. We have emphasized the produ
tion of straightforward andeasily understandable error messages. The 
ontent spe
i�
ations are regular expres-sions. As examples of 
ontent spe
i�
ations, the table and the body elements inXHTML 1.0 are 
onstrained by the following (slightly abbreviated) regular expres-sions:(
aption?, (
ol*|
olgroup*), thead?, tfoot?, (tbody+|tr+))(#PCDATA | a | abbr | a
ronym | address | applet | b | basefont | ...)*The LAML mirror synthesizer generates deterministi
 �nal state automata for thoseof the elements that have element 
ontent (su
h as table) whereas the elementswith mixed 
ontent (su
h as body) are validated by simpler means. The automataare implemented from Algorithm 3.5 of (Aho et al., 1986). The automata are repre-sented as lists and ve
tors in S
heme, and they are embedded dire
tly and 
ompa
tlyin the validation pro
edures. Automaton 
ompa
tness is important to keep downthe software loading times. The automaton validation fun
tions are fast due to useof binary sear
h for the transitions.In XHTML 1.0 stri
t/transitional/frameset there are 6/2/2 automata with more7



www.manaraa.com

than 40 transitions. In SVG 1.0 there are 27 automata with more than 40 tran-sitions. The largest of the XHMTL and SVG automata has 40 states and 1600transitions, and it o

upies appr. 16 Kbytes in the S
heme mirror sour
e �le. Thelarge automata o

urs in the 
ases where 
hoi
es among many XML 
onstru
tsappear in elements with element 
ontent. The size of the S
heme sour
e �le of theSVG mirror is 403 Kbytes. All the mirror sour
e �les of XHTML are less than 170Kbytes.In addition to the mirrors of XHTML and SVG we have de�ned a number of otherXML languages, ea
h of whi
h 
an be seen as linguisti
 abstra
tions in 
ontrast tode�nition of a set of individual fun
tional abstra
tions. The mirror fun
tions of allthe XML languages are part of a framework whi
h we 
all XML-in-LAML. As a
entral aspe
t of XML-in-LAML, a set of library fun
tions are shared among allXML languages in LAML. The shared XML-in-LAML library supports the internalAST do
ument format, higher-order fun
tions for AST traversal and transforma-tion, textual rendering fun
tions, 
ontent and attribute validation fun
tions, andsome bookkeeping fun
tionality whi
h allows fragments from two or more di�erentXML languages to 
oexist in a single do
ument.In 
ase that two di�erent XML-in-LAML languages have identi
ally named ele-ments, there will be a 
lash of mirror fun
tion names in S
heme. XML solves thisproblem by means of name spa
es whi
h disambiguate the two names by means of aunique pre�x. In LAML, we have introdu
ed the 
on
ept of a language map. A lan-guage map for a given XML language maps an element name to the 
orrespondingS
heme mirror fun
tion. Take as an example the following:(xhtml10-stri
t 'title) ) the title mirror fun
tion in XHTML 1.0 stri
tIf no ambiguity is present, a mirror fun
tion 
an be a

essed via a simple name. In
ase of ambiguity, a warning is issued at do
ument generation time, and the mirrorfun
tion should be a

essed via the language map. At mirror generation time, we
he
k that no mirror fun
tion 
ollides with names of R4RS S
heme fun
tions.6 Related workWe will restri
t the dis
ussion of related work to similar work done in S
heme, andto work in the area of other fun
tional programming languages.BRL is a language designed for server-side, database 
onne
ted web appli
a-tions (Lewis, 2000). BRL allows evaluation of S
heme program fragments withinan HTML do
ument. The S
heme fragments are nested in square bra
kets. As analternative understanding, a BRL do
ument 
an be seen as a non-standard S
hemeprogram, in whi
h strings are surrounded by `reverse square bra
kets', su
h as ℄astring[. As a 
ontrast, a LAML do
ument is a standard S
heme program whi
havoids the mixing of XML markup and S
heme fragments.S
ribe is a S
heme-based system for authoring of web pages, and in parti
ularte
hni
al do
uments (Serrano & Gallesio, 2002). Like BRL, S
ribe is based on anon-standard S
heme reader, whi
h introdu
es a new bra
keted syntax for (listsof) strings with inspiration from S
heme quasiquotation. The string [a ,(bold8



www.manaraa.com

"bold") string℄ serves as an example. S
ribe de�nes a parti
ular do
ument lan-guage (in the style of LaTeX) and be
ause of that S
ribe is able to generate outputin di�erent formats, su
h as HTML, PS, PDF and others. Like LAML, S
ribe usesan internal AST do
ument representation. S
ribe uses the internal do
ument rep-resentation for do
ument introspe
tion in interesting ways.Latte (Gli
kstein, 1999) is mixture of the Latex text formatting system andS
heme, at least at the 
on
eptual level. In Latte, the author uses a Latex-likemarkup style. Most interesting, however, Latte supports a S
heme-like language inTeX syntax.The PLT S
heme group has developed XT3D for `XML transformation by ex-ample' (Krishnamurthi et al., 2000) with inspiration from the R5RS S
heme ma
rofa
ility. As part of this work it is possible to generate S
heme builder fun
tionsfrom XML S
hemas. In LAML the similar mirror fun
tions are generated from XMLDTDs. Internally, the PLT tools represent XML do
uments as list stru
tures, whi
hare 
alled x-expressions. These are similar to the AST stru
tures used in LAML.Currently, LAML only support straightforward AST traversal and transformationfun
tions, whereas the PLT work relies on a mu
h more elaborate framework basedon pattern mat
hing and repla
ement.Kiselyov (2002) de�nes an XML format in S
heme 
alled SXML. An SXML
lause is an S-expression (a list data stru
ture), whereas a LAML 
lause is a S
hemeexpression whi
h refers to named XML mirror fun
tions. Both formats are intendedfor authoring purposes. Con
eptually, however, the SXML format is similar to aLAML AST. In a re
ent paper, Kiselyov and Krishnamurthi (2003) des
ribe aS
heme 
ounterpart to the W3C XSLT transformation framework, whi
h they 
allSXSLT. SXSLT works on SXML stru
tures. It is argued that SXSLT is superior toXSLT, and that it is more adequate for `power users' than XT3D.Walla
e and Run
iman (1999) dis
uss two di�erent representations of XML do
u-ments in Haskell. One is based on a generi
 tree representation of XML do
uments;The other is based on typed do
ument fragments, where the DTD gives rise to anumber of algebrai
 type de�nitions in Haskell. The driving for
e behind the se
ondapproa
h is validation of XML do
uments via stati
 type 
he
king of the HaskellXML programs.Meijer and 
olleagues have in a number of papers dealt with aspe
ts of webprogramming using Haskell. In the �rst of these a Haskell framework for CGI pro-gramming is presented (Meijer, 2000). In a se
ond paper, Meijer and Shields (2000)de�ne a new language 
alled XM� whi
h is indented for generation of dynami
XML do
uments. XM� is based on the point of view that programmati
 XML ex-pressions, in whi
h the textual 
ontent is written and passed as quoted strings, isintra
table. Therefore XM� deals with verbatim XML do
uments, expressed in alanguage similar to Haskell, in whi
h program fragments are es
aped. In 
ompari-son, LAML is based on programmati
 notation, and the textual 
ontents is passedas string 
onstants.Thiemann des
ribes a modelling of XML and HTML in Haskell (Thiemann,2002). Thiemann is able to synthesize Haskell 
ombinator libraries from XML andHTML DTDs. The synthesized libraries validate Haskell XML and HTML expres-9



www.manaraa.com

sions stati
ally by means of Haskell type 
he
king. Although a fully validatingHTML library is provided for, Thiemann �nds that a partial validation is ade-quate for pra
ti
al purposes. As a 
ontrast, we have found that a 
omprehensiveXML/HTML validation of stati
ally generated do
uments is both important andworthwhile.Hanus (2001) des
ribes a fun
tional/logi
al web programming framework for thelanguage 
alled Curry. This work is based on a straightforward modelling of HTMLas Curry data stru
tures. 7 Con
lusionsLAML is designed for authoring of 
omplex web pages and web sites using S
heme.A LAML do
ument is a S
heme program, whi
h uses a normal S
heme reader, andwhi
h 
an be pro
essed by use of most S
heme systems.We have found that programmati
 authoring using LAML is 
onvenient andpowerful for S
heme programmers. The rules of the XML mirror fun
tions havebeen developed through a number of LAML generations. We have used LAMLextensively over the last �ve years, primarily for stati
 pro
essing of XML-in-LAMLdo
uments.The XML-in-LAML framework has been used to bring in support of major andexisting XML markup languages, su
h as XHTML and SVG. We have also usedXML-in-LAML for de�nition and support of new XML languages in LAML, pri-marily in the edu
ational domain. The 
omprehensive validation of XML-in-LAMLdo
uments is seen as a valuable asset, be
ause any deviation from the do
umentstandard is identi�ed when the do
ument is pro
essed. The fully automati
 gen-eration of the validation pro
edures is a major step forward, 
ompared to earlierversions of the system whi
h required some manual programming e�orts to produ
ethe validation predi
ates.Although LAML is relatively mature, there are still areas where more work needsto be done. The transformation of do
uments from one XML-in-LAML languageto another represents one su
h area. Pretty printed XML rendering, and LAML'sXML parser, are two other areas where more work is needed.LAML is available as free software from the LAML homepage (N�rmark, 1999).Referen
esAho, Alfred V., Sethi, Ravi, & Ullman, Je�rey D. (1986). Compilers - prin
iples, te
hniquesand tools. Addison-Wesley.Gli
kstein, Bob. (1999). Latte|the language for transforming text. http://www.latte.org/.Hanus, Mi
hael. (2001). High-level server side web s
ripting in Curry. Pages 76{92 of:Ramakrishnan, I.V. (ed), PADL 2001. LNCS 1990. Springer Verlag.Kelsey, Ri
hard, Clinger, William, & Rees, Jonathan. (1998). Revised5 report on thealgorithmi
 language S
heme. Higher-order and symboli
 
omputation, 11(1), 7{105.Kiselyov, Oleg. 2002 (August). SXML. http://okmij.org/ftp/S
heme/SXML.html.Kiselyov, Oleg, & Krishnamurthi, Shriram. (2003). SXSLT: Manipulation language for10



www.manaraa.com

XML. Pages 256{272 of: Dahl, V., & Wadler, P. (eds), PADL 2003. LNCS 2562.Springer Verlag.Krishnamurthi, Shriram, Gray, Kathryn E., & Graunke, Paul T. (2000). Transformation-by-example for XML. Pages 249{262 of: Pontelli, E., & Costa, V. Santos (eds), PADL2000. LNCS 1753. Springer Verlag.Lewis, Bru
e R. 2000 (O
tober). BRL|a database-oriented language to embed in HTMLand other markup. http://brl.sour
eforge.net/.Meijer, Erik. (2000). Server side web s
ripting in Haskell. Journal of fun
tional program-ming, 10(1), 1{18.Meijer, Erik, & Sheilds, Mark. (2000). Xm� - a fun
tional language for 
onstru
ting andmanipulating XML do
uments. Submitted to USENIX Annual Te
hni
al Conferen
e2000. Available via http://www.
se.ogi.edu/�mbs/pub/xmlambda/.N�rmark, Kurt. (1999). The LAML home page. http://www.
s.au
.dk/�normark/laml/.N�rmark, Kurt. 2002 (May). Programmati
 WWW authoring using S
heme and LAML.The pro
eedings of the eleventh international world wide web 
onferen
e - the web en-gineering tra
k. ISBN 1-880672-20-0. Available from http://www2002.org/CDROM/-alternate/296/.Serrano, Manuel, & Gallesio, Eri
k. 2002 (O
tober). This is s
ribe! Presented at the`Third Workshop on S
heme and Fun
tional Programming'. http://www-sop.inria.fr/-mimosa/fp/S
ribe/do
/s
ribe.html.Thiemann, Peter. (2002). A typed representation for HTML and XML do
uments inHaskell. Journal of fun
tional programming, 12(5), 435{468.Walla
e, Mal
olm, & Run
iman, Colin. (1999). Haskell and XML: generi
 
ombinatorsor type-based translation? Pages 148{159 of: Pro
eedings of the fourth a
m sigplaninternational 
onferen
e on fun
tional programming. ACM Press. Published in SigplanNoti
es vol 34 number 9.

11


